
Final Project Report -- Arduino Based Guitar Tuner
Milad Mesbahi and Andrew Polonsky

Physics 4BL Lab 7
Dec 10, 2021

Abstract

The following project report on the design and assembly of a functioning guitar tuner demonstrates how
physics principles of sound and fourier transforms can be coupled with computing software and circuitry
to create a device that is used ubiquitously by most guitar players in the world. Our goal for the project is
to create a circuit that takes in a sound signal using a microphone, processes the signal in an arduino
microcomputer, and outputs the note to which the frequency of the signal corresponds to and whether that
frequency is flat, sharp, or in tune with that corresponding note. The final product almost successfully
identifies all the notes that the open strings of the guitar correspond to, with the exception of the low E
note (82.4 Hz). Additionally, the tuner displays whether or not the frequency is in tune with what the open
note of the guitar should be, but these results are slightly skewed to overestimating the actual frequency of
the signal and the device tends to lead to a tuning that is flatter than the accepted values of the notes.

Introduction/Background

Our guitar tuner functions on the basic principles of mechanical waves and periodic function properties.
When a sound wave is created, it is made up of a combination of simple sinusoidal functions of different
amplitudes and frequencies that are multiples of each other, called harmonics. This combination can be
written as a sum called the Fourier Series:



This series gives us the signal as a function of a sum of simpler functions that depend on time. However,
to identify which frequencies dominate the signal, we need to analyze it in the frequency domain.

The fourier transform is a mathematical operation that takes a signal of the time domain and converts it
into a frequency dependent function.

Plotting this function allows us to see which frequencies have the highest intensity and thus define the
signal. These frequencies are then compared to the frequencies that correspond to the pitches produced by
guitar strings and their difference allows us to identify if the input signal is flat or sharp.

The sound signal produced by a guitar string is called a standing wave, because it cannot propagate as it is
confined by physical boundaries on each side. A standing wave is also composed of multiple frequencies
and as it rings out on a guitar string, it causes air particles around it to oscillate at the same frequency.
This air particle oscillation is the resulting sound wave.

Due to the nature of standing waves, they can only oscillate at certain frequencies, which are all multiples
of a fundamental frequency. This frequency, which will be depicted as the first peak of a fourier
transform, depends on the length of the string that it is on:

- v the speed of the wave, F is the tension in the string, µ is the linear mass density of string.

When a guitar is tuned, the tension in the string is changed, and therefore the pitch that the string produces
also changes. The desired frequencies of for the notes produced by the open strings of the guitar are as
follow:

String Note (and harmonic) Frequency (Hz) Fundamental
Frequency (Hz)

6th E2 82.4 20.60

5th A3 110 27.50

4th D3 146.83 18.35



3rd G3 196 24.50

2nd B3 246.94 30.87

1st E4 329.63 20.60
Table 1, frequencies of the notes played by a guitar in standard tuning

Knowing the desired frequencies from each string allows us to predict where the desired peaks of the
fourier transform for each string should be.

For each string, we predict that the first peak will be at the fundamental frequency. This means that the 1st
and 6th string will have their first peak at around the same frequency. However, the tallest peak for each
string should be different. We hypothesize that each string’s tallest peak will be n amounts of peaks away
from the first peak, where n is the harmonic of the note. This frequency will be close to the frequency
listed in the table, but if the guitar is out of tune, then it might be slightly smaller or larger than the desired
frequency.

Experimental Setup

Materials Used:

- Arduino Uno starter kit
- 10k Potentiometer, 2 x 10k and 2k resistors, diode

- Max 9814 Microphone
- Laptop computer
- LCD
- IPhone
- Guitar
- Jumper wires
- Breadboard



Fig. 1, Guitar Tuner

Fig. 2, Circuit diagram

Two circuits were assembled using the arduino, as shown in Fig 1 and 2. The first circuit took an
analog data input from the microphone and sent it into the arduino. The second circuit received
digital signals from the arduino and operated the Liquid Crystal Display.

Using the microphone required a diode pointing to ground to make sure that the sound recording
device is not damaged. The LCD required a 22k resistor to make sure it does not receive too
much current. Twenty-two thousand ohms of resistance was achieved by placing 2 10k and 1 2k



ohm resistors in series. Additionally, a 10k Ohm potentiometer was used in the LCD circuit to
vary the display’s brightness.

Methods / Code Explanation

As mentioned previously, we used a Fast Fourier Transform function from an arduino library to
obtain the analog sound signal as a function of frequency. After that function was acquired, the
code looped through it to identify the frequency of the highest intensity. That frequency was then
compared to frequency ranges that correspond to each note (the frequency range increases with
each harmonic):

Note Frequency Range (Hz)

E2 75 - 90

A3 100 - 120

D3 130 - 150

G3 180 - 210

B3 230 - 260

E4 310 - 350
Table 2, frequency ranges that were used to identify a given frequency with a note from an open string.

Once the highest intensity frequency was placed into a range, the tuner was able to identify
which note the user was trying to tune to. Next, the code determined if the input frequency was
above, below, or within 1 Hz of the desired frequency (considering this as “in-tune”) and sent out
the result to the LCD.



Python Analysis

Fig. 3: FFT of 6th string of untuned guitar Fig. 4: FFT of 5th string of untuned guitar

Fig. 5: FFT of 4th string of untuned guitar Fig. 6: FFT of 3rd string of untuned guitar

Fig. 7: FFT of 2nd string of untuned guitar Fig. 8: FFT of 1st string of untuned guitar



In fig 3. the FFT measures the 6th string to be at 95 Hz (instead of 82.4 Hz), which is the location
of the tallest peak. This peak is also the third peak because it represents the second harmonic,
which is preceded by the first harmonic and the fundamental frequency.

A similar trend is seen in fig. 4 and fig. 5, in which the fourth peaks are the highest and also have
a slightly larger frequency than the note played by that string should have. These peaks are at
140 Hz for the fifth string (A note) and 193 Hz for the fourth string (D note) instead of being at
110 Hz and 146.83 Hz, respectively. The overshoots in frequencies might be caused by either the
guitar being out of tune or the microphone being unable to accurately receive and transmit a
sound signal.

For fig. 6 - 8, we see that the peaks that should represent the note played by the strings are not
the most intense ones. Instead, the 4th peaks in fig. 6 and 7 and the 5th peak in fig. 8 are
relatively short, which could possibly be explained by noise in the signal. However, these peaks
are the closest to the frequency that the guitar strings should have so they are the ones of interest
for us. In fig. 6 the frequency of the fourth peak is 190 Hz, but the desired frequency for that
string is 196 Hz (G note). In fig. 7, the frequency of the fourth peak is 250 Hz, but the desired
frequency for that string is 246.94 Hz (B note). Finally, in fig. 8, the frequency of the 5th peak is
329.63 Hz, but the desired frequency for that string is 290 Hz (E note).

Results

Fig. 9: results from professional guitar tuner after using our tuner to tune the guitar

As seen above, the tuner generally tuned notes too flat, which limited its accuracy and caused the
notes played to sound out of tune. Furthermore, the tuner could not pick up the low E note,
which is why it is not shown above. This may require signal amplification for better results in the
future.



Conclusion

In conclusion, our Arduino based guitar tuner was accurate in identifying the
corresponding notes of the guitar’s open strings expect for that of the low E note. However, the
tuner struggled to accurately display when a note was in tune, as it repeatedly overestimated the
actual frequency of a note played and led to a tuning that was flatter than the accepted value of a
specific note. This was discovered by individually strumming the guitar’s strings in the range of
a legitimate guitar tuner after it had been tuned with our Arduino based tuner. As shown in the
results section, nearly all the notes played were reported as being tuned to a value that was
considered “too low” by the app, thus highlighting the limitations of our tuner and its inability to
precisely indicate when a note was in tune. This could be explained by the limitations of our
hardware, as the microphone has a certain range of frequencies and intensities that it can pick up.
Furthermore, Arduino has limited computational power, so it fails to perform a very accurate
FFT.

There are multiple additions and corrections we would have made to this experiment if
given more time or if pursued again in the future. One of these things would be to perform the
experiment in a controlled environment to improve the accuracy of the tuner. This would include
attempting to use broadband filters to filter out noise and unwanted frequencies. This would
yield better results and limit any random errors we faced. Another thing we would like to do is
create a tuner that can differentiate sharps and flats of different notes. This would not only
increase the accuracy of our tuner but would make it much more useful and multifunctional.
Lastly, we would have liked to 3D print a case for the tuner to make it more aesthetically
pleasing, damage protected and easy to carry.



Appendix / Code

Arduino:

//LCD Libraries
#include <Wire.h>
#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
//FFT
#include "arduinoFFT.h"

#define SAMPLES 128
#define SAMPLING_FREQUENCY 1000

arduinoFFT FFT = arduinoFFT();

unsigned int sampling_period_us;
unsigned long microseconds;

double vReal[SAMPLES];
double vImag[SAMPLES];

//tuning variables
String tune = "IN TUNE";
void setup()
{
Serial.begin(9600);
lcd.begin(16,2);
//lcd.backlight();
lcd.setCursor(0,1);
lcd.print(" Guitar Tuner");
delay(3000);
lcd.clear();
lcd.setCursor(2,0);
lcd.print("Play a note!");
sampling_period_us = round(1000000*(1.0/SAMPLING_FREQUENCY));

}



void loop()
{
//Sampling
for(int i = 0; i<SAMPLES; i++)
{
microseconds = micros();

vReal[i] = analogRead(0);
vImag[i] = 0;

while(micros() < (microseconds + sampling_period_us)){
}

}

//FFT
FFT.Windowing(vReal, SAMPLES, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
FFT.Compute(vReal, vImag, SAMPLES, FFT_FORWARD);
FFT.ComplexToMagnitude(vReal, vImag, SAMPLES);
double peak = FFT.MajorPeak(vReal, SAMPLES, SAMPLING_FREQUENCY);

double frequency = peak;
/*PRINT RESULTS*/

// lcd.clear();
// lcd.print(peak); //Print out what frequency is the most dominant.
// delay(1000);
//
// displayToLCD(peak);
if(frequency == -1)
{
return;

}
//E2
if(frequency >= 75 && frequency <= 90)
{
lcd.clear();
lcd.setCursor(7,1); //center it
lcd.print("E2");
if(frequency < 81)
{
lcd.setCursor(2,0);//to the left



lcd.print("b");
}
if(frequency > 83.5)
{
lcd.setCursor(14,0); //to the right
lcd.print("#");

}
if(frequency >= 81 && frequency <= 83.5)
{
lcd.clear();
lcd.setCursor(7,0);
lcd.print("E2");
lcd.setCursor(4,1);
lcd.print(tune);

}
}
//A3
else if(frequency <= 120.00 && frequency >= 100.00)
{
lcd.clear();
lcd.setCursor(7,1); //center it
lcd.print("A3");
if(frequency < 109.00)
{
lcd.setCursor(2,0);//to the left
lcd.print("b");

}
if(frequency > 111.00)
{
lcd.setCursor(14,0); //to the right
lcd.print("#");

}
if(frequency >= 109.00 && frequency <= 111.00)
{
lcd.clear();
lcd.setCursor(7,0);
lcd.print("A3");
lcd.setCursor(4,1);
lcd.print(tune);

}



}
//D3
else if(frequency >= 130.00 && frequency <= 150.00)
{
lcd.clear();
lcd.setCursor(7,1); //center it
lcd.print("D3");
if(frequency < 146)
{
lcd.setCursor(2,0);//to the left
lcd.print("b");

}
if(frequency > 148)
{
lcd.setCursor(14,0); //to the right
lcd.print("#");

}
if(frequency >= 146 && frequency <= 148)
{
lcd.clear();
lcd.setCursor(7,0);
lcd.print("D3");
lcd.setCursor(4,1);
lcd.print(tune);

}
}
//G3
else if(frequency >= 180.00 && frequency <= 210.00)
{
lcd.clear();
lcd.setCursor(7,1); //center it
lcd.print("G3");
if(frequency < 195.00)
{
lcd.setCursor(2,0);//to the left
lcd.print("b");

}
if(frequency > 197.00)
{
lcd.setCursor(14,0); //to the right



lcd.print("#");
}
if(frequency >= 195.00 && frequency <= 197.00)
{
lcd.clear();
lcd.setCursor(7,0);
lcd.print("G3");
lcd.setCursor(4,1);
lcd.print(tune);

}
}
//B3
else if(frequency >= 230.00 && frequency <= 260.00)
{
lcd.clear();
lcd.setCursor(7,1); //center it
lcd.print("B3");
if(frequency < 245)
{
lcd.setCursor(2,0);//to the left
lcd.print("b");

}
if(frequency > 248)
{
lcd.setCursor(14,0); //to the right
lcd.print("#");

}
if(frequency >=245 && frequency <= 248)
{
lcd.clear();
lcd.setCursor(7,0);
lcd.print("B3");
lcd.setCursor(4,1);
lcd.print(tune);

}
}
//E4
else if(frequency >= 310.00 && frequency <= 350.00)
{
lcd.clear();



lcd.setCursor(7,0); //center it
lcd.print("E4");
if(frequency < 328)
{
lcd.setCursor(2,0);//to the left
lcd.print("b");

}
if(frequency > 330)
{
lcd.setCursor(14,0); //to the right
lcd.print("#");

}
if(frequency >= 328 && frequency <= 330)
{
lcd.clear();
lcd.setCursor(7,0);
lcd.print("E4");
lcd.setCursor(4,1);
lcd.print(tune);

}
}
}

Python:

import numpy as np

import matplotlib.pyplot as plt

from scipy.fftpack import fft

from scipy.io import wavfile

from google.colab import drive

from scipy.signal import find_peaks

drive.mount('drive')

sound_data = np.loadtxt('/content/drive/MyDrive/CSV Data Files/Physics

4BL/Copy of sound_file_1_0.csv', delimiter = ',')

index = np.linspace(0, len(sound_data), len(sound_data))

#normalized_data = sound_data - min(sound_data)



#normalized_data = normalized_data / max(normalized_data)

time = np.linspace(0, (len(sound_data)-1) / 32500., len(sound_data))

plt.plot(time, sound_data)

frequency = 1.0 /time

fourier_transform = np.fft.fft(sound_data)

transformed_data = np.abs(fourier_transform)

#plt.plot(frequency, transformed_data)

#plt.xlim(0,800)

trimmed_frequency = frequency[1:800]

trimmed_data = transformed_data[1:800]

plt.plot(trimmed_frequency, trimmed_data)

plt.xlim(0,800)

print(max(trimmed_data))

sound_data = np.loadtxt('/content/drive/MyDrive/CSV Data Files/Physics

4BL/Low_E_0.csv', delimiter = ',')

index = np.linspace(0, len(sound_data), len(sound_data))

#normalized_data = sound_data - min(sound_data)

#normalized_data = normalized_data / max(normalized_data)

time = np.linspace(0, (len(sound_data)-1) / 32500., len(sound_data))

plt.plot(time, sound_data)

frequency = 1.0 /time

fourier_transform = np.fft.fft(sound_data)

transformed_data = np.abs(fourier_transform)

#plt.plot(frequency, transformed_data)

#plt.xlim(0,800)

trimmed_frequency = frequency[1:800]

trimmed_data = transformed_data[1:800]

plt.plot(trimmed_frequency, trimmed_data)

plt.xlim(0,500)

plt.title("FFT of 6th String")



plt.xlabel("Freqeuncy (Hz)")

plt.ylabel("Intensity")

print(max(trimmed_data))

sound_data = np.loadtxt('/content/drive/MyDrive/CSV Data Files/Physics

4BL/A_note_1.csv', delimiter = ',')

index = np.linspace(0, len(sound_data), len(sound_data))

#normalized_data = sound_data - min(sound_data)

#normalized_data = normalized_data / max(normalized_data)

time = np.linspace(0, (len(sound_data)-1) / 32500., len(sound_data))

plt.plot(time, sound_data)

frequency = 1.0 /time

fourier_transform = np.fft.fft(sound_data)

transformed_data = np.abs(fourier_transform)

#plt.plot(frequency, transformed_data)

#plt.xlim(0,800)

trimmed_frequency = frequency[1:800]

trimmed_data = transformed_data[1:800]

plt.plot(trimmed_frequency, trimmed_data)

plt.xlim(0,500)

plt.title("FFT of 5th String")

plt.xlabel("Freqeuncy (Hz)")

plt.ylabel("Intensity")

print(max(trimmed_data))

sound_data = np.loadtxt('/content/drive/MyDrive/CSV Data Files/Physics
4BL/D_note_2.csv', delimiter = ',')

index = np.linspace(0, len(sound_data), len(sound_data))

#normalized_data = sound_data - min(sound_data)

#normalized_data = normalized_data / max(normalized_data)

time = np.linspace(0, (len(sound_data)-1) / 32500., len(sound_data))

plt.plot(time, sound_data)



frequency = 1.0 /time

fourier_transform = np.fft.fft(sound_data)

transformed_data = np.abs(fourier_transform)

#plt.plot(frequency, transformed_data)

#plt.xlim(0,800)

trimmed_frequency = frequency[1:800]

trimmed_data = transformed_data[1:800]

plt.plot(trimmed_frequency, trimmed_data)

plt.xlim(0,500)

plt.title("FFT of 4th String")

plt.xlabel("Freqeuncy (Hz)")

plt.ylabel("Intensity")

print(max(trimmed_data))

sound_data = np.loadtxt('/content/drive/MyDrive/CSV Data Files/Physics

4BL/G_note_3.csv', delimiter = ',')

index = np.linspace(0, len(sound_data), len(sound_data))

#normalized_data = sound_data - min(sound_data)

#normalized_data = normalized_data / max(normalized_data)

time = np.linspace(0, (len(sound_data)-1) / 32500., len(sound_data))

plt.plot(time, sound_data)

frequency = 1.0 /time

fourier_transform = np.fft.fft(sound_data)

transformed_data = np.abs(fourier_transform)

#plt.plot(frequency, transformed_data)

#plt.xlim(0,800)

trimmed_frequency = frequency[1:800]

trimmed_data = transformed_data[1:800]

plt.plot(trimmed_frequency, trimmed_data)

plt.xlim(0,500)

plt.title("FFT of 3rd String")

plt.xlabel("Freqeuncy (Hz)")

plt.ylabel("Intensity")

print(max(trimmed_data))



sound_data = np.loadtxt('/content/drive/MyDrive/CSV Data Files/Physics

4BL/B_note_4.csv', delimiter = ',')

index = np.linspace(0, len(sound_data), len(sound_data))

#normalized_data = sound_data - min(sound_data)

#normalized_data = normalized_data / max(normalized_data)

time = np.linspace(0, (len(sound_data)-1) / 32500., len(sound_data))

plt.plot(time, sound_data)

frequency = 1.0 /time

fourier_transform = np.fft.fft(sound_data)

transformed_data = np.abs(fourier_transform)

#plt.plot(frequency, transformed_data)

#plt.xlim(0,800)

trimmed_frequency = frequency[1:800]

trimmed_data = transformed_data[1:800]

plt.plot(trimmed_frequency, trimmed_data)

plt.xlim(0,500)

plt.title("FFT of 2nd String")

plt.xlabel("Freqeuncy (Hz)")

plt.ylabel("Intensity")

print(max(trimmed_data))

sound_data = np.loadtxt('/content/drive/MyDrive/CSV Data Files/Physics

4BL/High_E_1.csv', delimiter = ',')

index = np.linspace(0, len(sound_data), len(sound_data))

#normalized_data = sound_data - min(sound_data)

#normalized_data = normalized_data / max(normalized_data)

time = np.linspace(0, (len(sound_data)-1) / 32500., len(sound_data))

plt.plot(time, sound_data)

frequency = 1.0 /time

fourier_transform = np.fft.fft(sound_data)



transformed_data = np.abs(fourier_transform)

#plt.plot(frequency, transformed_data)

#plt.xlim(0,800)

trimmed_frequency = frequency[1:800]

trimmed_data = transformed_data[1:800]

plt.plot(trimmed_frequency, trimmed_data)

plt.xlim(0,500)

plt.title("FFT of 1st String")

plt.xlabel("Freqeuncy (Hz)")

plt.ylabel("Intensity")

print(max(trimmed_data))


