
Bayesian Optimization for Wide Landscapes (BOWL)
CIS 7000 / GRASP Lab / May 16, 2025

Milad Mesbahi
Robotics Department

University of Pennsylvania
mesbahi@seas.upenn.edu

I. PROBLEM OVERVIEW

Bayesian Optimization (BayesOpt) is a global optimization
strategy we can use to evaluate black-box functions that are
expensive to sample and lack analytical gradients. It is partic-
ularly effective in scenarios where each function evaluation is
costly, and thus the number of evaluations must be minimized.

We can further understand this mathematically by high-
lighting its main parts. Let f : X → R be the objective
function we wish to maximize, where X ⊂ Rd is a compact,
bounded domain. We assume that f is unknown and expensive
to evaluate, and that we can only observe noisy measurements
of the form:

y = f(x) + ε,

where ε ∼ N (0, σ2
n) represents Gaussian observation noise.

The goal is to find the global maximizer [3]:

x∗ ∈ argmax
x∈X

f(x), f∗ = f(x∗).

Since we don’t have access to the true function value,
BayesOpt constructs a probabilistic model p(f | D) of the
objective function using observed data D = {(xi, yi)}ni=1. A
common choice is a Gaussian Process (GP) prior:

f ∼ GP(µ(x), k(x,x′)),

where µ(x) is the mean function and k(x,x′) is a positive-
definite kernel function.
At each iteration, the model is updated with new data, and an
acquisition function α(x;D) is maximized to determine the
next query point:

xn+1 = argmax
x∈X

α(x;D).

The goal of these acquisition functions is really to bal-
ance exploration (sampling uncertain regions) and exploitation
(sampling near high posterior mean) [3].

A. Two Bottlenecks in Modern BO Practice

Despite its success, two issues vanilla BO struggles with is
when:

1) Rugged landscapes. In high dimensions the GP poste-
rior becomes locally ill-conditioned; acquisition functions
flatten out, leading to stalling in sharp or multi-modal
regions.

2) Poor generalisation of found optima. Classic BO does
not differentiate wide, flat basins (which generalise) from
narrow spikes. The optimiser may converge to brittle
solutions that deteriorate when evaluated under realistic
perturbations of x.

With these two core problems in mind, the goal of this
paper was to attempt a new methodology for inducing current
BO methods to search and explore these black-box spaces
and return robust solutions. Below we will analyze how we
measure and find solutions that are ”robust” and the current
methods we will be taking inspiration from.

II. RELATED WORKS

A. Entropy-SGD: Biasing Gradient Descent into Wide Valleys

The first algorithm we draw inspiration from, and is frankly the
cornerstone of our custom algorithm BOWL, is the Entropy-
SGD algorithm [2]. This optimization framework is designed
for training deep neural networks by explicitly biasing search
toward wide valleys in the loss landscape, and classically has
access to the true function form and thus can do so with avail-
able gradient information. These regions of parameter space
are empirically linked to better generalization, as they are more
”robust” to perturbations in data and model parameters.

Empirical analysis of the Hessian at local minima in deep
networks has shown that well-generalizing solutions often lie
in flat regions characterized by many near-zero eigenvalues.
In contrast, sharp minima, although possibly lower in training
loss, tend to overfit and generalize poorly.

Entropy-SGD aims to modify the objective function to
favor wider minima by introducing a new quantity called
local entropy, which captures both the depth and the flatness
of a valley around a candidate point.

Local Entropy Objective: Let f : Rn → R be the original
loss function. For a current parameter vector x, the local
entropy is defined as:

F (x, γ) = log

∫
x′
exp

(
−f(x′)− γ

2
∥x− x′∥2

)
dx′,

where γ > 0 is a hyperparameter controlling the scope, i.e.,
how localized the entropy estimation is.

This is a form of a smoothed objective that integrates the
loss over a local neighborhood, weighting nearby parameters
more strongly.

We can then calculate the gradient of the local entropy
objective by:

∇F (x, γ) = γ (⟨x′⟩ − x) ,

where the expectation ⟨x′⟩ is taken over the local Gibbs
distribution:

P (x′|x) ∝ exp
(
−f(x′)− γ

2
∥x− x′∥2

)
.

Since this expectation is intractable to compute exactly
in high dimensions, the algorithm approximates it using
Stochastic Gradient Langevin Dynamics (SGLD), a Markov
Chain Monte Carlo method that introduces noise into gradient
updates to sample from the posterior.

Putting this all together, we can describe the Entropy-SGD
method effectively as a two-loop algorithm:

• The inner loop runs L steps of SGLD to estimate ⟨x′⟩
given the current parameter vector x.

• The outer loop performs a standard SGD update using
the entropy-adjusted gradient:

x← x− η · γ(x− ⟨x′⟩),

where η is the learning rate.
This effectively pulls the weights toward regions where a large
volume of nearby parameters yield low loss — i.e., flat valleys.
This is the cornerstone two-loop optimization pattern we will
use in BOWL to bias our gradient toward robust solutions.

Lastly, to balance exploration and exploitation during train-
ing, Entropy-SGD employs a scoping schedule that gradually
increases γ. A typical schedule is:

γ(t) = γ0(1 + γ1)
t,

which narrows the entropy region over time, allowing the
optimizer to zoom into the most robust valleys.

The main issue you may notice with bringing this to BayesOpt
is that it relies on access to gradient information in order to
run the SGLD loop. This is where the second method we will
be drawing from comes into play.

B. Maximum Probability of Descent (MPD)

Given a GP belief over the black-box function f(x), we can
form a belief over its gradient at a location x:

∇f(x) ∼ N (µx,Σx).

For any unit direction vector v, the directional derivative
∇vf(x) is a scalar random variable:

∇vf(x) = v⊤∇f(x) ∼ N (v⊤µx,v
⊤Σxv).

The probability that a step in direction v leads to descent is:

Pr(∇vf(x) < 0) = Φ

(
−v⊤µx√
v⊤Σxv

)
,

where Φ(·) is the standard normal CDF.

Now, a key insight of MPD is that the direction maximizing
the descent probability is not necessarily −µx [5]. Instead, the
optimal direction is derived from solving:

v∗ = arg max
∥v∥=1

Φ

(
−v⊤µx√
v⊤Σxv

)
.

This is equivalent to minimizing:

v⊤µx√
v⊤Σxv

,

which is solved analytically by:

v∗ ∝ −Σ−1
x µx.

The corresponding descent probability is then:

Pr(∇v∗f(x) < 0) = Φ

(√
µ⊤

xΣ
−1
x µx

)
.

Again, we can put this all together by describing that at each
iteration, MPD alternates between:

i) Learning Phase: Collecting observations to improve
the posterior belief over ∇f(x) such that the expected
probability of descent increases.

ii) Movement Phase: Iteratively stepping in direction v∗ as
long as Pr(∇v∗f(x) < 0) > p∗.

To then efficiently choose where to sample next, MPD defines
an acquisition function that approximates the expected max-
imum descent probability after gathering data at a batch of
query points Z:

α(Z) = E
[
µ⊤

x|ZΣ
−1
x|Zµx|Z

]
,

which is tractable in closed form, given Gaussian updates to
the GP posterior.

So, how do we combine these to get the best of both worlds?
BOWL is what we propose.

PROPOSED METHOD - BOWL

Our proposed algorithm, BOWL (Bayesian Optimization for
Wide Landscapes), attempts to be a novel hybrid that leverages
the strengths of Entropy-SGD and MPD, adapted into the
context of Bayesian Optimization. Its core motivation is to
construct a principled descent mechanism over black-box
functions that achieves robust convergence, with an emphasis
on identifying wide, flat optima.

BOWL solves the problem of optimizing an expensive
black-box function f : X → R by replacing true gradient
information (unavailable in black-box settings) with posterior
gradient estimates from a Gaussian Process surrogate. These
estimates are then used to drive a modified Entropy-SGD pro-
cess that behaves as if it were descending the true landscape,
but with uncertainty-aware guidance.

In essence, BOWL reframes Entropy-SGD as a stochastic
policy in parameter space, but guided by a Bayesian model
rather than by actual gradients. Simultaneously, the MPD
formulation allows us to estimate the most robust direction of

descent under GP uncertainty, providing a natural plug-in for
Entropy-SGD’s inner dynamics.

We do this by using the MPD GP (DerivativeExactGPSE-
Model), which is a modification of the standard exact GP from
BoTorch and GPyTorch. This model does not only provides
posterior estimates for function values, but is also capable of
computing the posterior distribution over gradients:

∇f(x) ∼ N (µx,Σx).

This posterior is updated online with new function evaluations,
and supports:

• Exact computation of GP gradient mean and variance;
• Analytical expressions for the derivative and second

derivative of the RBF kernel;
• Streaming updates, which enable flexible asynchronous

sampling.
We modify the standard Entropy-SGD loop by replacing true
gradients with those derived from the GP posterior described
above. Each Entropy-SGD update proceeds in two nested
loops:

• In the inner loop, we sample local perturbations around
the current point x, following Langevin dynamics. How-
ever, the gradient signal used in this loop is obtained via
our MPD oracle:

v∗ ∝ −Σ−1
x µx,

which captures the direction with the highest probability
of decreasing the objective, considering both the mean
gradient and its uncertainty.

• In the outer loop, we move the iterate toward the
weighted average of Langevin samples µ, simulating the
effect of minimizing the local entropy objective:

xt+1 = xt − η · γ(xt − µ).

Noise is injected during the inner loop via Gaussian pertur-
bations to ensure that wide valleys are explored. The scoping
parameter γ is annealed over time, gradually narrowing the
focus of the search. Importantly, this stochastic dynamic is
governed by the GP’s beliefs about the gradient — no true
gradients are ever computed.

Hybrid Acquisition Policy

To retain global exploration capabilities, BOWL augments
the EntropySGD inner descent procedure with a simplified
Bayesian Optimization acquisition mechanism. Every k itera-
tions, we:

1) Compute a custom acquisition function (Downhill
Quadratic from the MPD Github) based on the current
GP posterior;

2) Optimize the acquisition function using multi-start sam-
pling over the bounds;

3) Evaluate the objective at the acquired point and update
the GP with this new observation;

Algorithm 1: BOWL
Input: Black-box objective f , domain bounds

X ⊂ Rd, GP hyperparameters, Langevin loop
length L, step size η, entropy decay γ(t)

Output: Best solution x∗ found

1 Initialize:
2 Draw n0 initial Sobol samples {xi} ∼ Sobol(X)
3 Evaluate f(xi) and fit initial GP surrogate model
4 Select best point x0 ← argmax f(xi)
5 for t = 1, . . . , T do
6 Entropy-SGD Descent Step:
7 for ℓ = 1, . . . , L do
8 Estimate GP gradient ∇f(xt) ∼ N (µt,Σt)

9 Compute MPD direction: vt ∝ −Σ−1
t µt

10 Inject Gaussian noise and perform Langevin
update

11 Outer Update:
12 Compute local entropy mean µt ← E[x′] over

Langevin samples
13 Update current point:

xt+1 ← xt − η · γ(t) · (xt − µt)
14 Evaluation and Tracking:
15 Evaluate f(xt+1), update GP with new observation
16 Track best f∗ ← max(f∗, f(xt+1))
17 if t mod k = 0 then
18 Acquisition Jump:
19 Optimize MPD-inspired acquisition function

α(x)
20 if new point improves objective: then
21 Jump to new point: xt+1 ← argmaxα(x)

22 if refitting condition met then
23 Refit GP hyperparameters using MLL

optimization

24 return best seen point x∗

4) Optionally jump to the acquired point if it significantly
outperforms the current iterate.

This acquisition loop ensures that BOWL does not overcommit
to local descent early on, and maintains a degree of exploration
over the global search space.

EXPERIMENTAL RESULTS

While the proposed BOWL framework has not yet achieved
stable performance on high-dimensional black-box functions,
early results on classic 2D and 3D synthetic benchmarks
suggest its strong potential in low-dimensional settings. We
evaluate BOWL on three commonly used global optimization
functions: Levy, Branin, and Hartmann 3D. These are widely
accepted as standard test cases for evaluating exploration-
exploitation performance in Bayesian optimization.

Hartmann-3D Benchmark

To evaluate the practical effectiveness of our BOWL
framework, we test it on the well-established Hartmann-3D
function. This benchmark is a smooth, three-dimensional,
multi-modal function defined on the unit cube [0, 1]3.

The Hartmann-3D function is given by [4]:

f(x) = −
4∑

i=1

αi exp

− 3∑
j=1

Aij(xj − Pij)
2

 ,

where:

α = [1.0, 1.2, 3.0, 3.2]⊤,

A =


3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 , P = 10−4 ·


3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 .

The global maximum of this function is approximately
f∗ ≈ 3.86278, occurring near the point x∗ =
[0.1146, 0.5556, 0.8525]. Note that the function is typically
posed as a minimization problem, but in this experiment we
reformulate it for maximization to be consistent with the goal
of maximizing f(x) to make sure it pairs with how BOWL is
setup.

Figure 2 shows the convergence of BOWL on the Hartmann-
3D benchmark. The y-axis reports the function value f(x)
obtained at each outer iteration, while the x-axis denotes the
progression of optimization.

Fig. 1: Convergence of BOWL on the Hartmann-3D function.
The dashed line indicates the global maximum f∗ ≈ 3.8547.

Levy Function

The Levy function is a highly multimodal, non-convex test
function commonly used in global optimization benchmarks.
The Levy function is designed to be deceptive: it contains
many local minima and steep ridges, making it difficult for
local optimizers to reach the global optimum without getting
trapped [4].

Fig. 2: The Levy Function

For a d-dimensional input x = [x1, . . . , xd] ∈ [−10, 10]d,
the Levy function is defined as:

The global minimum is known and occurs at:

x∗ = [1, . . . , 1], with f(x∗) = 0.

Fig. 3: Convergence of BOWL on the Levy function. Dashed
line shows the global minimum f∗ ≈ 0.

Branin Function

Lastly, the Branin function is a well-known two-dimensional
optimization benchmark that presents a multimodal landscape
with three global optima. It is often used to evaluate the
balance between exploration and exploitation in global op-
timization algorithms.
Given a two-dimensional input x = [x1, x2] ∈ [−5, 10] ×
[0, 15], the Branin function is defined as:

f(x) =

(
x2 −

5.1

4π2
x2
1 +

5

π
x1 − 6

)2

+10

(
1− 1

8π

)
cos(x1)+10.

The function has three identical global minima with value
f∗ ≈ 0.3979 located at:

x∗ ∈ {[−π, 12.275], [π, 2.275], [9.42478, 2.475]} .

These optima are well-separated and embedded in broad,
curved valleys. The presence of multiple basins also makes

this function an effective test for whether an optimizer can
consistently locate diverse good regions rather than converging
prematurely [1].

Fig. 4: Convergence of BOWL on the Branin function. Dashed
line shows the global minimum f∗ ≈ 0.3979.

DISCUSSION

Across all three benchmark problems, BOWL demonstrates
clear signs of promise, especially in low-dimensional, rugged
landscapes. The consistent use of MPD-informed Langevin
steps, guided by GP posterior gradients, appears to help the
method escape narrow basins and avoid local traps.

Convergence Stability. On the Hartmann-3D problem, BOWL
shows rapid initial gains and stabilizes just below the known
global maximum of f∗ ≈ 3.8547, even when started from ran-
dom Sobol points. The presence of occasional dips followed by
strong recoveries in the convergence curve (Figure 2) supports
the idea that the optimizer retains flexibility to reorient and
course-correct, rather than getting stuck, a seemingly direct
benefit of the inner-outer structure.

Robust Descent. For Levy-2D, a notoriously deceptive and
rugged landscape with many local minima, BOWL steadily
converges toward the global optimum at x∗ = [1, 1] despite
noise and irregularities. While it does not immediately snap
to the lowest region, the progressive improvement seen across
50 steps indicates that the optimizer is capable of navigating
complex multimodal terrain.

Generalization over Local Traps. On Branin, BOWL reaches
a final score close to the global minimum f∗ ≈ 0.3979 and
avoids getting locked into local optima and converged quite
fast.

Effect of Hyperparameters. All tests used the same optimizer
configuration:

• n_initial = 20 (i.e., 5× d) initial Sobol points
• n_iters = 50 outer loop steps
• Outer step size η = 0.05
• L = 20 inner SGLD updates
• Scope parameters γ0 = 10−2, γ1 = 10−4

• GP Refit frequency = Every 3 outer loop steps

The fact that these fixed settings yielded near-optimal solutions
across function classes without heavy tuning shows promise
for what could come.

LIMITATIONS

While BOWL performs well on structured low-dimensional
tasks, it faces significant challenges when scaling to higher-
dimensional black-box problems. The core issue stems from
the naive way high-dimensionality is currently handled, as
we treat all input dimensions equally and attempt to model
full gradient posteriors using relatively few observations. As
dimensionality increases, the quality of GP gradient estimates
deteriorates rapidly, leading to noisy, unstable inner-loop dy-
namics. Moreover, because BOWL currently relies on a single-
point update strategy, it lacks the parallel information gain
that could come from batch evaluations. Incorporating a mini-
batching scheme — where multiple points are proposed and
queried per iteration — could dramatically improve sample
efficiency and help stabilize learning in wider, under-explored
regions of the search space.

Another shortcoming is the relatively loose integration be-
tween Entropy-SGD and MPD-style guidance. While BOWL
uses the MPD gradient posterior to steer inner Langevin
steps, it does not yet adopt the full trajectory-based search
or probabilistic descent analysis that MPD supports. In higher
dimensions, such MPD features like evaluating descent prob-
abilities across multiple local directions or performing direc-
tional projections may become essential for preserving signal
in a sea of noise. A more principled fusion, where entropy-
scoped updates are explicitly weighted by directional descent
probability, could offer a stronger inductive bias toward ro-
bustness. Addressing both of these fronts remains critical for
generalizing the method to real-world, large-scale applications.

COMPELLING IDEA

Beyond the core implementation of BOWL, a compelling
direction for future work is to build a more tightly integrated
version of MPD that directly incorporates entropy-based
updates. We could reverse the relationship: start from the
original MPD framework and embed a local entropy-driven
optimizer within it. This would mean using the MPD
loop to determine robust movement directions and descent
probabilities which perform well in high-dimensions, but
instead of taking deterministic steps or posterior mean updates,
use an inner Entropy-SGD optimizer to refine the local search,
leveraging stochasticity to bias the solution toward flat optima.

This could be added as a move method in the MPDOptimizer
class (which includes ”step”, ”iter”, and ”mu” already). In
this version, each MPD update includes an ”entropy move”
phase, where a local Langevin-style optimizer is run using GP-
derived posterior gradients. Crucially, this optimizer operates
over the GP model and never requires access to the true
function’s gradients. This introduces a more expressive and
uncertainty-aware descent step, where sampling noise and
posterior variance naturally steer the optimization away from

sharp, brittle basins. By combining MPD’s global view with
Entropy-SGD’s local robustness, this could be an interesting
way to regularize the MPD gradient ascent.

CONCLUSION

In this work, we introduced BOWL, a framework that fuses
the robustness-seeking dynamics of Entropy-SGD with the
uncertainty-aware guidance of Maximum Probability of De-
scent (MPD), adapted for black-box optimization. Our goal
was to build a principled optimizer that not only finds high-
performing solutions, but favors those lying in wide, flat
regions of the landscape, solutions that are empirically more
stable and generalizable.

Through experiments on classic synthetic benchmarks in-
cluding Hartmann-3D, Levy, and Branin, we demonstrated that
BOWL is capable of consistently reaching near-optimal values
with relatively few queries. Its performance, while still limited
in high-dimensional settings, shows strong promise in low-
dimensional tasks.

Although suffering from certain limitations, future work
would include scaling BOWL to higher dimensions via smarter
batch selection and sparse modeling, as well as exploring more
expressive acquisition policies directly inspired by MPD.

REFERENCES

[1] Eric Brochu, Vlad M Cora, and Nando De Freitas. A Tutorial
on Bayesian Optimization of Expensive Cost Functions, with
Application to Active User Modeling and Hierarchical Rein-
forcement Learning. arXiv preprint arXiv:1012.2599, 2010.

[2] Pratik Chaudhari et al. “Entropy-SGD: Biasing Gradient De-
scent Into Wide Valleys”. In: Journal of Statistical Mechanics:
Theory and Experiment 2019.12 (2019).

[3] Roman Garnett. Bayesian Optimization. Available online. Cam-
bridge University Press, 2023.

[4] Jungtaek Kim. Benchmark Functions for Bayesian Optimiza-
tion. https : / / github . com / jungtaekkim / bayeso - benchmarks.
Version updated February 2023. 2023.

[5] Lam Si Nguyen et al. “Maximum Probability of Descent for
Bayesian Optimization”. In: Advances in Neural Information
Processing Systems 35 (2022), pp. 11841–11853.

