
An Autonomous VIO-based Quadcopter
MEAM 6200 / GRASP Lab / May 4, 2025

Milad Mesbahi
Robotics Department

University of Pennsylvania
mesbahi@seas.upenn.edu

I. PROBLEM OVERVIEW

This project aimed to develop a fully autonomous quadrotor
capable of planning, control, and state estimation in a GPS-
denied, obstacle-filled environment. Building on the discrete
A* search, flat-output trajectory generation, and geometric
nonlinear controller from Projects 1.1–1.3, and the visual-
inertial state estimation of Project 2, we integrate three core
autonomy modules and add an extra-credit local replanning
capability into a single, unified pipeline.
1) Global Path Planning: We represent the world as a

3D occupancy grid (voxel map) as described in [4]. The
resolution and safety margin were hand-tuned, and A*
search was employed to compute a collision-free dense
path from start to goal. This discrete sequence of voxel-
centers guarantees obstacle clearance but typically contains
far more points than necessary and irregular spacing for
smooth flight, so trajectory sparsification became very
important, as explained next.

2) Trajectory Generation: Because the quadrotor is differen-
tially flat, any sufficiently smooth output curve in the flat
coordinates (x, y, z, ψ) can be lifted exactly to a state–input
trajectory via algebraic inversion of the dynamics [5, 7].
We exploit this by first converting the dense A* path into
a sparse set of waypoints {pi}Ni=0 via distance-threshold
pruning. Segment durations are then chosen as

Ti =
∥p i+1 − pi∥

vmax
,

ensuring the quadrotor never exceeds the prescribed maxi-
mum speed. On each segment we fit a fifth-order minimum-
jerk polynomial

x(t) =

5∑
j=0

a
(i)
j τ j , τ =

t−
∑

k<i Tk

Ti
,

which by construction is continuously differentiable in
position through the fourth derivative (snap) [2, 10]. This
yields a collision-free, dynamically feasible trajectory in
(x, ẋ, ẍ,

...
x ,

....
x) that can be computed and executed in real

time with no additional nonlinear boundary-value solves.
3) Feedback Control and State Estimation: We imple-

ment a geometric nonlinear SE(3) controller that tracks
the minimum-jerk flat outputs via an outer-loop PD on
position/velocity and an inner-loop PD on attitude [3]. As
our quadrotor operates without GPS or ground-truth poses,

we fuse body-frame IMU measurements and stereoscopic
visual observations in an error-state Kalman filter (ESKF)
[11]. The filter maintains

(p, v, q, . . .)︸ ︷︷ ︸
nominal state∈SE(3)

and δx ∈ R18︸ ︷︷ ︸
small error state in the tangent space

.

During propagation, the nominal state is advanced by the
IMU-driven dynamics while the covariance of the error
state is updated under the linearized process model. Upon
each vision update z = h(x) + η, we form an innovation
z − h(x̂), compute an additive correction δx = K

(
z −

h(x̂)
)
, and inject this correction back onto the manifold,

yielding a tightly-coupled SE(3) estimate for control [11].

All experimental results are taken and made possible using
the EuRoC MAV benchmark datasets [1].

II. CODE MODIFICATIONS SINCE PROJECTS 1 & 2
To combine all of our autonomy modules into the full

pipeline requested in Project 3, we made several inter-
twined improvements to push cruise speeds to maximize
points on automated testing, while retaining tight tracking
and safety in cluttered environments. First, we re-tuned our
outer-loop position gains from Kp = diag(8.75, 8.75, 8.75),
Kd = diag(4.8, 4.8, 4.8) to the more aggressive Kp =
diag(13, 13, 13), Kd = diag(5.5, 5.5, 8.5). While higher gains
reduce steady-state lag, higher velocities using the purely PD-
based force command consistently underestimated the drag-
induced deceleration, leading to oscillations or lag in straight-
line segments.

To mitigate this, we incorporated a simple linear aerody-
namic drag term,

Fdrag = − kd v,

in the outer-loop force computation. Drawing on the model
presented in [8], which reports drag coefficients on the order
of 0.05−0.1N/(m/s) for similar quadrotor frames, we set

kd = 0.0725 N/(m/s).

This single constant captures the first-order effect of blade-
induced and body-frame drag in forward flight, and was tuned
empirically by sweeping kd in simulation until the residual
tracking error (without replanning) was minimized. The results
of this are shown in Figure 1, which shows the Euclidean
position-tracking error ∥x(t) − xdes(t)∥ over the entire maze
JSON map, once with kd = 0 and once with kd = 0.0725.

In the uncompensated case, the quadrotor visibly lags be-
hind the planned path in tight turns and long straight segments,
particularly in the bottom-left and top-right corridors. This
lag arises from the controller failing to account for velocity-
dependent aerodynamic drag, which becomes significant at
higher cruise speeds (3.3 m/s). The resulting thrust misestima-
tion leads to delayed acceleration and overshoot. Conversely,
the inclusion of a linear drag compensation term ensured the
flight path remained closely aligned with the planned trajec-
tory throughout the maze. This improvement is quantitatively
confirmed in figures 1d and 1c, which shows that without
drag compensation, the RMS tracking error reaches 0.52m and
peaks at nearly 0.95m, compared 0.36m and the peak error of
0.76m for the drag compensated case. Furthermore, the error
curve in 1d also shows reduced amplitude and fewer high-
frequency oscillations, indicating more stable convergence.

(a) Trajectory without drag com-
pensation

(b) Trajectory with drag compen-
sation

(c) Tracking error without drag
compensation

(d) Tracking error with drag
compensation

Fig. 1: Subfigures (a) and (b) compare the executed 3D
flight trajectories (blue) against the planned minimum-jerk
trajectories (black), while (c) and (d) show the corresponding
Euclidean tracking errors over time, with and without aerody-
namic drag compensation.

Beyond control, we also sharpened our planner. Voxel
resolution was refined from 0.15m to 0.12m and safety margin
from 0.60m to 0.575m to tightly hug obstacles without pro-
voking spurious collisions. We raised the nominal maximum
speed from 2.5 m/s to 3.31 m/s to shrink segment durations,
and increased our waypoint-pruning threshold to 0.3 m so that
only truly significant direction changes spawn new polynomial
segments. Table I clearly shows that, across all three maps,
our Project 3 pipeline reduces flight time by roughly 20–30%,
thanks to higher cruise speeds and drag compensation. Flight
distance remains comparable (within 5–10%), indicating that
the path shape did not substantially change, which makes

(a) Proj 1.3: voxel size =
0.15m, margin = 0.60m, way-
point threshold = 1.5m

(b) Proj 3: voxel size = 0.11m,
margin = 0.575m, waypoint
threshold = .3m

Fig. 2: Dense A* search paths computed on the “maze” map
for Project 1.3 vs. Project 3. Finer discretization in Project 3
yields a smoother, more obstacle-hugging route at the expense
of more planning nodes.

TABLE I: Performance comparison: Projects 1.3 vs. Project 3
across three maps.

Over–Under Maze Window
Flight Time (s)

Proj 1.3 13.4 10.0 11.5
Proj 3 10.3 7.2 8.2

Flight Distance (m)
Proj 1.3 33.8 24.5 27.3
Proj 3 32.4 22.9 26.1

Planning Time (s)
Proj 1.3 12.9 3.1 30.0
Proj 3 38.3 8.8 74.7

sense as we did not change the core logic of our A* method.
Planning time increases in Project 3, since we now use
finer voxel resolution (0.12 m vs. 0.15 m), a tighter safety
margin (0.575 m vs. 0.60 m). This trade-off (more expensive
planning for faster, smoother execution) required tuning and
trial-and-error to find the desired sweet spot when maximizing
performance.

Finally, we fully retained our error-state Kalman filter from
Project 2. As seen in figure 3a, the roll, pitch, and yaw
estimates capture the quadrotor’s agile turns through the maze.
Yaw exhibits the largest swings as the vehicle reorients, while
roll and pitch stay bounded, demonstrating tight lateral control
of our VIO method. In figure 3b, The filter’s covariance trace
rises rapidly during startup, then plateaus around 3.5 × 104,
indicating the ESKF’s ability to quickly resolve its initial
uncertainty and maintain a low, stable uncertainty level once
IMU and stereo updates balance.

III. EXTRA CREDIT: REAL-TIME LOCAL REPLANNING

To recover from unexpected obstacles or accumulated drift,
we extended WorldTraj with a two-mode state-machine
(see Fig. 4). Below we describe (1) the implementation, (2)
quantitative performance vs. the vanilla pipeline, (3) known
failure modes, and (4) conclude.

A. Implementation Details

To equip WorldTraj with real-time local replanning, we
inserted a two-mode loop inside replan():

(a) Estimated attitude (roll, pitch,
yaw) and Position (Tx, Ty, Tz)
over time.

(b) Trace of the ESKF covariance
matrix over time.

Fig. 3: VIO/ESKF diagnostics during flight in the maze
environment: (a) attitude and position estimates, (b) filter
uncertainty.

Fig. 4: Local replanning state-machine.

1) Map update & collision check: At each IMU step, we
update a 7.5m local occupancy map and, every 0.02s, sim-
ulate the next 0.5s of the current minimum-jerk trajectory
via check_traj_collision().

2) Trigger replanning: If any future waypoint collides or
the vehicle drifts beyond 2m from the last plan origin, we
switch from “Execute” to “Replan” mode.

3) Replanning pipeline: We crop a new intermediate goal
along the original global line–of–sight, rerun A* on the
local map, sparsify the returned path, recompute segment
timings, and splice in the new minimum-jerk polynomial
segments.

4) Resume execution: Once the fresh trajectory is ready, we
return to “Execute” mode seamlessly.

All of this is contained in three core methods:

• check_traj_collision(t) — steps forward along
the flat-output trajectory and queries occupancy.

• crop_local_goal(cur_pos) — projects a point at
fixed horizon toward the global goal.

• replan(cur_state, t) — orchestrates the mode
switch, local A*, and trajectory refit.

Much of our replanning approach is inspired by the “search-
then-smooth” philosophy from Liu et al. [6], where at each
control step, each new call to A* + polynomial fitting yields
the next “motion-primitive” patch in real time.

The first major change we made here from Project 3 was
how we treated time for the polynomial fitting. No replanning
means a single mission-start time, so we treat the input t as
time since the very beginning. We simply locate the segment

index i and normalized phase s by

i = clip
(
searchsorted({tk}, t)−1, 0, N−2

)
, s =

t− ti
ti+1 − ti

,

and evaluate the 5th–order polynomial on segment i. Each time
we replan, we record a new traj start time = t0. We first
shift and clamp the query time:

τ = min
(
max(t− t0, 0), T

)
, T = traj duration.

Then we pick

i = clip
(
searchsorted({tk}, τ)−1, 0, N−2

)
, s =

τ − ti
ti+1 − ti

,

and evaluate the same minimum-jerk polynomial on segment
i.

Here, the EC version resets the time origin at each replan
(by subtracting t0) and clips it to the new trajectory’s duration,
whereas the non-EC version always uses the raw t measured
from the very start.

The only other distinct change made for the extra credit
portion was made in our graph_search() method. We
found that requiring an exact match on the goal voxel some-
times fails when the goal lies just outside free space or is
marginally occupied. To address this, we introduce a small
metric tolerance

tol = 0.5m,∥∥current_index− goal_index
∥∥× resolution ≤ tol.

As soon as the popped node is within 0.5 m of the true goal,
we terminate and reconstruct a path that still ends exactly at the
desired goal metric coordinate. This small relaxation improves
robustness (avoiding failure when the goal cell is occupied)
and often reduces the number of node expansions needed to
find a feasible path.

B. Performance Comparison

We evaluated and compared the results of Project 3 and
Project 3 Extra-Credit (EC) on three maps (Over–Under,
Maze, and Window). Table II reports collision count, total flight
time, and average number of replans. All times in seconds.

TABLE II: EC Performance: Baseline vs. Local Replanning

Over–Under Maze Window
Flight Time (s)

Proj 3-EC 11.2 8.0 10.4
Proj 3 10.3 7.2 8.2

Flight Distance (m)
Proj 3-EC 31.7 23.0 26.4
Proj 3 32.4 22.9 26.1

Planning Time (s)
Proj 3-EC 4.7 3.9 2.2
Proj 3 38.3 8.8 74.7

As seen in Table II, local replanning incurs a modest
increase in total flight time on the order of 9–27%. This can
be explained by the fact that each replan causes the vehicle
to deviate slightly (and sometimes slow) as it negotiates the
newly discovered obstacle. Furthermore, we re-evaluate the

tradeoff between speed and safety, reducing our nominal speed
down to 2.27 m/s. This was necessary as in maps with cluttered
obstacles or narrow corridors, high cruise speeds cause fre-
quent collisions checks to trigger very rapid replanning, which
both increases planning overhead and can stall the vehicle, thus
making slowing down to smooth out the replanning events
necessary.

Despite these detours, the total flown distance remains
within ±2% of the baseline, confirming that local replanning
does not send the robot on wildly longer routes and simply
stitches together small corrective segments. Perhaps the most
striking difference is the collapse of upfront planning cost:

• Over–Under: 38.3 s → 4.7 s (–87.7%)
• Maze: 8.8 s → 3.9 s (–55.7%)
• Window: 74.7 s → 2.2 s (–97.0%)

This makes the planner effectively real-time, while the small
flight–time penalty is acceptable for the zero-collision guaran-
tee.

Fig. 5: Visualization of successive local replans in the Maze
environment. The green and red markers denote the start and
goal, respectively. Each colored curve represents a locally
replanned trajectory segment, triggered upon detecting an
imminent collision or significant deviation from the current
plan. The color gradient reflects temporal progression, with
earlier replans shown in darker shades.

C. Failure Cases

In the switchback test, our planner produced an
empty self.points, indicating that the initial call to
plan_traj() (and thus graph_search) failed to find
any path. Likely contributors may include an oversized
safety margin, our waypoint threshold (0.3m might be too
aggressive), or how we are calling our local map update.

However, since this is the only map that causes failure,
it strongly suggests that our hyperparameter choices need
retuning. With more time, we could jointly adjust margin,
voxel resolution, controller gains, and pruning threshold to
arrive at a parameter set that is robust across all test maps.

D. Conclusion and Future Work

Our extra-credit local replanning framework demonstrated
real-time performance gains on the majority of benchmark

maps, collapsing upfront planning times by up to 97% while
keeping flight-time penalties modest. The single failure on
the switchback map underlines the need for more flexible
hyperparameterization in tight corridors. Looking forward, it
would be very interesting to integrate search-based motion
primitives and minimum-snap trajectory generation, drawing
on techniques from [6, 9] which directly enforce dynamic
feasibility and improve corridor negotiation. Extending our
geometric PD controller with integral action to form a full
PID loop would also help reduce steady-state errors under
unmodeled disturbances at higher speeds.

ACKNOWLEDGEMENTS

I would like to thank Professor Taylor, Professor Paulos,
and all of the TAs for facilitating such a rewarding course.
All work presented here was completed individually.

REFERENCES

[1] Michael Burri et al. “The EuRoC MAV Datasets”. In: The
International Journal of Robotics Research 35.10 (2016),
pp. 1157–1163.

[2] T. Flash and N. Hogan. “The Coordination of Arm Move-
ments: An Experimentally Confirmed Mathematical Model”.
In: Journal of Neuroscience 5.7 (1985), pp. 1688–1703.

[3] GRASP Lab. MEAM 6200 Lecture Slides 08: Control and
Nonlinear Systems – Quadrotor Control. University of Penn-
sylvania.

[4] GRASP Lab. MEAM 6200 Lecture Slides 09: Graph Search.
University of Pennsylvania.

[5] GRASP Lab. MEAM 6200 Lecture Slides 14: Differential Flat-
ness and Trajectory Generation. University of Pennsylvania.

[6] Sikang Liu et al. “Search-based Motion Planning for Quadro-
tors using Linear Quadratic Minimum Time Control”. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, Sept. 2017, pp. 2872–2879.

[7] Daniel Mellinger and Vijay Kumar. “Minimum snap trajectory
generation and control for quadrotors”. In: 2011 IEEE inter-
national conference on robotics and automation. IEEE. 2011,
pp. 2520–2525.

[8] Kartik Mohta et al. “Experiments in fast, autonomous, GPS-
denied quadrotor flight”. In: 2017 IEEE/RSJ international
conference on intelligent robots and systems (2017).

[9] Piecewise Trajectories: Dynamically Feasible Trajectories
Through Waypoints. MEAM 6200 Lecture Slides, University
of Pennsylvania.

[10] A. N. Sharkawy. “Minimum Jerk Trajectory Generation for
Straight and Curved Movements”. In: Advances in Robotics:
Reviews, Book Series, Vol. 2. 2020.

[11] CJ Taylor. MEAM 6200 Lecture Slides 19: Sensing. University
of Pennsylvania.

